Datalight

RXE Theory of Operation

Copyright © 2000 by Datalight, Inc.

Contents

0o 00X o o OO
FiX-UD DESCITDIIONS......ucurieerereeereserseseesesesstie sttt bbb bbbt
REMOVING FiX-UPS... ottt e bbbt
Handling Runtime Fix-Ups
Handling Ambiguous I nstructions
EXE HEAEr DESCIIPLION.....c.cuitiiiecteteececte sttt s et s a et s bbbt es s et s s et b en s an st es e anbetsnas
RXE Header Description........

RXE Convert Operation.........

RXE Optimize Operation
RXE VETY OPEIALION.......oieeieeiiriereeerissesisisisssetesessssssesessssssssesesssssessesssssesssssssssssssssssessssssssessssssssessssssssesessssssessssssssesssssnes
EXTOIS AN WAININGSttt st
L IV) o= 1 o] OO

Document History

Revision Action Author Date
0.90 First draft. Dennis Edwards 10/24/2000
0.99 Final draft. Dennis Edwards 10/28/2000
1.00 Formatting changes and final review Brandon Thomas 10/28/2000
Keith Garvin
101 Added Verification section and completed content. Keith Garvin 12/01/2000
ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2

Filename: RXE Theory of Operation.doc Page: 1 of 17

Introduction

For a variety of reasons, including but not limted to the 64K naxi num
segnent size limt inposed by the Intel architecture, a DOS . EXE program
will typically contain nultiple program segnents. The address of any
program el enent (function entry point, variable, etc.) is deternm ned by
combi ni ng the physical location of the start of a segnent (a 16-bit val ue
expressed in units of 16 byte "paragraphs”) with the 16-bit byte offset of
the data element within that containing segnent. The maxi num size of a
segnent is limted by the 16 bits of the offset value and is 2716 bytes or
64KB. The maxi mum real node address space is also limted by the 16 bits
of the segment value which is (64K paragraphs*16 bytes/paragraph) = 1MB

Because of the segnmented addressing schene, a program desi gner nust enpl oy
one of two strategies in order for a programto be rel ocatable at run-
time. The choice of these strategies by the program desi gner determ nes
whet her the linker can generate a .COMfile or if it nust generate a .EXE
file.

Ina .COM(.BIN, etc.) file, all programelenents are contained within a
single segnent. The value of this single segnent can be determ ned at
run-time by inspecting the value of the CS register which is establish by
the DOS program | oader when the programis passed control by the operating
system The initial entry point for programexecution is firmy
established as offset 100h within the single .COMfile segment. This
address represents the first possible program el enent |ocation follow ng
the Program Segment Prefix (PSP). A DOS PSP is often generically referred
to as a process control block in discussions of operating systemtheory.

The DOS PSP is a 256-byte data structure created by DOS as part of the

| oad process. DOS updates the PSP during program execution. A DOS PSP
contains such information as the nunber and val ue of file handl es opened
by the program the programs command |ine argunments (if any), the segnent
val ue of the program s environment strings and so on. Because the PSP is
| ocated at offset O within the single .COMfile segnent the maxinmum
effective size of a .COMfile image is 2716-256=65280 bytes.

In order to overconme the size linmt of .COMfiles or to otherw se take
advant age of the segnented Intel architecture (yes, there ARE advant ages
to it) the program designer may chose to enploy the alternate .EXE file
strategy. A DOS .EXE file may contain nultiple code (executable) and/or
data segnments and the programimge nmay be as |large as the real npde

envi ronnent and avail able nenory allow. A .EXE file, like a .COMfile, is
fully run-tinme relocatable by the DOS operating system

When DOS runs a normal .EXE file froma disk file, the initial |oad inage,
m nus overlays, etc. but including both code and data is | oaded i nto RAM
fromdisk. The location and length of the initial |oad inmage is stored in
the file's . EXE header that is prepended to the program | oad i nage by the
linker. The .EXE file header also contains a list of “fix-ups” (a.k.a.
program rel ocatable entries.)

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 2 of 17 Filename: RXE Theory of Operation.doc

Fix-Up Descriptions

Afix-up is a datumthat identifies the location, relative to the start of
the load i mage, of a segnment reference: The value in the .EXE | oad i nage
found at the fix-up location is the paragraph address relative to the
start of the |load i mage where the referenced program segnent begins.

In order for standard multi-segnent .EXE files to be fully relocatable at
run-time, DOS nust "fix up" the paragraph addresses in the .EXE imge with
the actual segnent addresses of the programwhen it | oads the program

i mge fromdisk. The actual segnment address of the start of a segnent is
the paragraph address within the i nage plus the segnment value at which the
programis |oaded. Wthin a .EXE file, offsets are always taken relative
to the start of the elenent's containing segment rather than the program s
PSP segnent. The segnent-rel ative addressi ng schenme used by .EXE files is
conveni ent for building overlaid code nodules as well as iterated contro
constructs such as static object constructor and destructor tables.

I n many enbedded conputer systens, mechanical disk drives are enul ated by
a conbi nation data structures and code that are contained in ROM DOS ROM
di sks exist within the executable first megabyte of address space of Inte
processors operating in Real Mdde. Because prograns routinely need to
update data as part of their normal execution, an ordinary .COM or .EXE
file must first be copied to RAM by DOS before the program can execut ed.
When execution space is at a premum these duplicated ROM and RAM i nages
are wasteful of systemresources. |If a scheme could be devel oped to
execute at least part of the programdirectly fromROM wi thout copying
that portion of the programinage to RAM then enbedded system

manuf acturers could realize significant space savings. It is precisely
this problem of wasted system resources that the Datalight ROVabl e

EXecut abl e (RXE) conversi on program sol ves.

In order to achieve the greatest user benefit, the RXE conversion program
relies on the segnent ordering conventions of DOS prograns that demand
that the .EXE i mage be divided into Code and Data segnent classes with al
data segments grouped together at the end of the inmage file. Any Code
segnent has execut abl e and readabl e but not witable attributes and so may
contain both executable code and constant data. Any program el enent that
nmust be nodified during program execution nust be contained within the
coll ection of data segnents |ocated at the end of the .EXE image file. An
obvi ous assunption of the RXE conversion programis a conpl ete absence of
sel f-nmodi fying code. This ban on self-nodi fying code al so disallows run-
time variables within the Code segnment. These restrictions on Code
segment attributes are typical of nodern operating system protection
schenmes even though conmmercial DOS conpiler start-up code and floating
poi nt enul ati on software often violate such comonly accepted tenants.

ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 3 of 17

Removing Fix-Ups

Code that runs directly fromROMis sonetinmes referred to as "eXecute In
Pl ace" (XIP) code. |In order for the RXE conversion programto obtain X P
capability it rmust consider three classes of fix-ups. The first class of
fix-ups are those which refer to Code segnents. Since all Code segnents
wWill remain in a fixed ROM | ocation, any Code relative fix-up identified
in the . EXE header can be replaced with a constant segnment address val ue
and then renoved fromthe fix-up list in the .EXE file header of the
resultant .RXE programfile. All Code segnent references, whether
contained in a Code or a Data segnent, are dealt with in this way. The
constant values that are used to replace the Code relative fix-ups are
based on information provided by the user when the RXE conversion program
is run. The user nust specify both the segnment address val ue where the
XIP image (including the RXE header) will reside in ROM as well as the
nane (as specified in the programs .MAP file) of the first Data segnent
inthe .EXE image file that has a witable segnent attribute.

The result of the RXE conversion process is a partially relocatable .RXE
image file. The programentry point of a .RXE file, specified in the .EXE
file header, will point to executable code in ROM The .EXE file header

of the .RXE image file is also nodified so that only the .RXE Data
segnents (and the RXE_BASE segnment which proceeds them are |oaded into
RAM and fixed up by DOS in the normal manner. The fix-ups that are
performed by DOS at load tinme are the second class of fix-ups that nust be
consi dered by the RXE conversion program Each of these fix-ups that
resides in a Data segnent and refers to a data el ement contained within
the relocatable Data segnents of the .RXE program The length of the .EXE
header is adjusted to include the Code segnents of the program so that
only the Data and RXE_BASE segnents are | oaded into RAM and fixed up by
DOS. The anpunt of RAM space saved by this Xl P techni que depends on the
amount of executabl e code and constant data that are stored in the Code
segnents of the .EXE file since only those segnents identified by the user
as having a witable attribute are copied to RAM by the DOS program

| oader.

The third, final, and nost troubl esome class of fix-ups are those

contai ned within Code segnents and that refer to program el enents
contained within a Data segnent. Since these Data segnment references
reside in Code segnents that are physically read-only, DOS cannot fix them
up at load tine. Also, since various run-tine factors (nunber of and
nature of DOS device drivers, internal DOS data structure allocations,
space reserved for user environnent strings, etc.) each influence the

| ocation at which the relocatable Data segnents are | oaded into nmenory by
DOS, these Data relative fix-ups cannot be resolved solely by the RXE
conversion programat the time it is run, run-tinme steps nust also be
taken to adjust these addresses.

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 4 of 17 Filename: RXE Theory of Operation.doc

Handling Runtime Fix-Ups

The sol ution enpl oyed by the RXE conversion programfor this third cl ass
of fix-ups is to replace the nmachine code instructions that access the
data with a three-byte instruction sequence. The first two bytes of this
repl acenent instruction sequence generate a software interrupt, the base
nunber of which may be specified by the user at the time the RXE
conversion programis run. The final byte of the instruction sequence,
the Fix-up ID Byte (FUB), is decoded by the software interrupt handler in
t he RXE_BASE segnment that is prepended to the start of the Data segments
by the RXE conversion program Depending on the |length of the origina

i nstruction sequence, one or nore NOP instructions may al so be emtted by
the RXE conversion programto maintain instruction alignnent of the

repl acenent and subsequent machi ne code sequences. The definitions of the
fix-up 1D bytes follow

Fix-Up ID Bytes
Fix-up ID Description
BO- B4 This nunmber is an index into a 16-el ement array of

Dat a segnent values. An RXE interrupt handl er uses
this index value to retrieve an actual segnent val ue
froma table kept in the RXE_BASE segnent.

B5- B7 For direct register accesses, this value specifies
the destination register into which the RXE
interrupt should | oad the specified segment val ue.
These regi ster specifications are decoded as foll ows

AX regi ster

BX register

CX register

DX register

Sl register

DI register

BP register

I ndi cates that the register (or

constant) indirection is to be

enpl oyed and that the destination of

the segnment value is a nmenory

| ocation rather than a CPU register

The RXE interrupt handl er decodes

the actual form of the nmenory

reference by inspecting the nodr/ m

byte which (after processing by RXE

Convert) follows any im8 or inml6

terms in the register indirect

addr essi ng expression.

~NOoO O~ WNEO

The RXE software interrupt handlers are initialized at programrun-tine.
The values stored in the RXE_BASE table are fixed up after the Data
segments have been | oaded into nenory by DOS (which perforns normal Data
relative fix-ups). Once the interrupt handl ers have been initialized and
the RXE_BASE table has been fixed up, control is passed on to the actua
entry point of the XIP application.

When an RXE software interrupt is generated by the XIP programduring its
normal course of operation, the RXE interrupt handl er gains control and

ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 5 of 17

decodes the FUB (and possibly nodr/ m and di spl acenent bytes) at the
interrupt's return CS:IP location to deternine the operation that needs to
be perfornmed to satisfy the Data relative fix-up. Once the appropriate
action has been perfornmed by the RXE interrupt handler it adjusts the
return CS:IP and returns control to the application programwi th the Data
relative fix-up effectively perfornmed. The RXE base interrupt handl er
decodes the nmovenent of i medi ate segnent data into registers and nenory.
A second interrupt handler (for interrupt nunber RXE base+l) is used
solely to push inmedi ate segnment val ues onto the stack

The RXE conversion programonly supports 80186 or earlier CPUs.

Wthin those instruction sets there are three classes of instructions that
RXE Convert supports. The supported instructions are:

Supported Instruction Fix-Ups...

Mhenoni ¢ Op- code
nov r16, inmmé6 {B8..BF} FIXUP
nov r/m6, inml6 C7 nodr/ m [disp] FIXUP
push i mil6 68 FI XUP
wher e
i mmL6 is an i mmedi ate (constant) segnent
val ue in Code
rlé is a destination register
r/ m6 is either a destination register or an
address expression
modr/ m is the CPU nodr/ m byte which defines
the current r/nl6 address expression
di sp is an optional 8-bit or 16-bit termin
t he address expression as specified by
nodr / m
FlI XUP is the segment's paragraph address
injected into the Code segnent by the
I'inker

The Intel CPU nanuals are the standard reference for how to decode the
machi ne code emitted by conpilers. Please refer to those manuals for nore
i nformati on on these instruction sequences.

Each of the above instructions is simlar in one regard they all take a
16-bit i medi ate value as the source operand. This is the only operation
that may be neaningfully associated with a fix-up. There are several other
instructions that also act on imml6 data and which could be found in the
instruction stream which is termnated at a fix-up location. The imil6

i nstructions that are NOT supported by RXE foll ow

UnSupported Instruction Fix-Ups...

Vhenoni ¢ Op- code

nov sp, inml6 BC i mmL6

nov sp, inml6 C7 C4 imml6
CS: 2E

SS: 36

DS: 3E

ES: 26

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs

Page: 6 of 17 Filename: RXE Theory of Operation.doc

imul r/m6, imil6 69 nodr/ m[disp] FIXUP
test r/nl6, inml6 F7 modr/ m [di sp] FI XUP
add r/me6, imil6 81 nodr/ m [disp] FIXUP
or r/ml6, imm6 81 modr/ m [di sp] FI XUP
adc r/ml6, imm6 81 modr/ m [di sp] FI XUP
sbb r/me6, inml6 81 nodr/ m[disp] FIXUP
and r/me6, inml6 81 nodr/ m[disp] FIXUP
sub r/me6, inmilé 81 nodr/ m[disp] FIXUP
xor r/me6, inmmil6 81 nodr/ m[disp] FIXUP
cnp r/m6, inml6 81 nodr/ m [disp] FIXUP
add ax, immé6 05 FI XUP
or ax, inmml6 0D FI XUP
adc ax, inmml6 15 FI XUP
sbb ax, imm6 1D FI XUP
and ax, imm6 25 FI XUP
sub ax, imm6 2D FI XUP
xor ax, imml6 35 FI XUP
chp ax, inml6 3D FI XUP
test ax, immé6 A9 FI XUP
retn i 6 C2 FI XUP
retf imil6 CA FI XUP
enter inml6, imB C8 FI XUP
dw @at a @at a
wher e
| M6 is an i medi ate (constant) segnent
val ue in Code
ri6 is a destination register
r/ me is either a destination register or an
address expression
Modr/ m is the CPU nodr/ m byte whi ch defines
the current r/nl6 address expression
Di sp is an optional 8-bit or 16-bit termin
the address expression as specified by
nmodr / m
Fl XUP is the segment's paragraph address
injected into the Code segnent by the
i nker
NOTES
1) The "nmov sp, imil6" sequence is specifically unsupported.
2) Segnent overrides are not detectable and thus not
supported by RXE. Any possible occurrence of a segnent
override will cause RXE Convert to generate an unsupported
segnent override warni ng describing the op-code’s |ocation
3) The reg field of the modr/mbyte is used to extend the
nmeani ng of all opcodes of value 81 and so differentiate
one instruction fromanother. Al other synbols are as
above.
4) The declaration of data that will cause a fix-up in a code
segnent is specifically unsupported.
ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2

Filename: RXE Theory of Operation.doc Page: 7 of 17

Shoul d the RXE Convert program di scover any of the unsupported opcodes
above (except segment overrides) it will, if it cannot reasonably
interpret themas part of a supported instruction sequence, display a
nmessage describing the nature and | ocation of the instruction and abort.
In fact, any sequence of bytes (such as is often encountered when data
decl arations appear in a Code segnent) that cannot be reasonably decoded
as a supported instruction sequence will cause the RXE Convert programto
di spl ay a nessage and abort.

While the relative nunber of unsupported instructions seens |arge, years
of practical experience indicate that the instructions that conpilers ent
to deal with fix-up values are al nost exclusively direct register noves.
Support for other cases have been added as required.

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 8 of 17 Filename: RXE Theory of Operation.doc

Handling Ambiguous Instructions

A nore likely problemthan that of an unsupported instruction sequence is
that of an anbi guous instruction sequence. The reason anbi guous cases
exist is that the RXE conversion program can only know the | ocation of the
fix-up value, not the beginning of the instruction sequence. The .EXE
file header contains absolutely no information regarding instruction
alignment as no such information is needed then the programis fully

rel ocatabl e. To understand the significance of ambi guous instruction
sequences | et us consider the follow ng assenbly | anguage exanpl es:

nov al , C7H
nov [si], SEG Data

If we assune the paragraph address of the Data segnent is OB7A0 then these
assenbly | anguage instructions woul d cause the assenbler/linker to emt
the foll owi ng sequence of bytes:

Addr ess -4 -3 -2-10
Dat a BO C7 C7 04 A0 B7

The address val ues shown in the table above are relative to the start of
the fix-up in the opcode sequence. As described before, the C7 opcode is
generated by the supported assenbly | anguage instruction "nmov r/nl6,

i mil6”". Note that there are two occurrences of the C7 opcode present in
t he byte sequence above and that both of those val ues appear within the
maxi mum four-byte instruction length of that instruction. RXE Convert is
faced with the dilema of resolving the two choices. The possible
interpretations of the above byte sequence are:

nov di, A004
Or
nov [si], B7A0

The key to the resolution of this problemis to note that only the latter
interpretation will align the start of the required i mediate data with
the actual |ocation of the fix-up in the Code segnment and so the first
case is clearly wong. RXE Convert will correctly choose the |atter case
in this exanple because it has enough data to nmake a correct
determination. Now consider this alternate exanple:

nov [bx+si +68], SEG Data

The output fromthe assenbler/linker in this case would be the follow ng
byt e sequence:

Addr ess -3-2-10
Dat a C7 40 68 A0 B7

In this case RXE Convert is faced with choosing between the follow ng two
supported opcode sequences.

mov [bx+si +68], SEG Data

ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 9 of 17

- Or‘ -
push SEG Dat a

Both of these instructions align the fix-up properly and both decode as
supported instruction sequences by RXE. There is no way for RXE Convert
to tell which is the correct choice. It so happens that because RXE
Convert processes single byte opcodes first, it will wongly choose the
latter choice in this case

Because RXE Convert cannot guarantee it will always choose the right

i nstruction sequence in ambi guous cases, warnings, describing the |location
of the code sequence in the .EXE file, will be generated whenever an

anbi guous instruction sequence is detected. The follow ng classes of

anmbi guous instructions produce warnings in RXE Convert:

A) unsupported instructions within a | onger supported instruction
sequence

B) supported instructions within a |onger supported instruction
sequence

C) supported instructions within a |onger unsupported instruction
sequence

D) possi bl e segnent overrides
NOTES:

1) Any purely unsupported instruction sequence, nested or not, wll
cause RXE Convert to display an error nmessage and abort.

2) Any unclassifiable instruction sequence (one that can not be
classified as supported or unsupported) will cause RXE Convert to
di splay an error nessage and abort.

3) The declaration of a variable in a Code segnment which causes a
Data relative fix-up nmay or may not be detectable by RXE Convert
and/ or RXE Verify.

As illustrated, RXE Convert's warnings regardi ng anbi guous instruction
sequences may or may not be benign. It is the users responsibility to
i nvestigate and validate such instruction sequences and deternine the
validity or the invalidity of the RXE Convert output.

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 10 of 17 Filename: RXE Theory of Operation.doc

EXE Header Description

When the . EXE to . RXE conversion process has been conpleted, all entries
in the fix-up list, except for those that point to Data fix-ups within the
Data segnments, will have been renoved fromthe . EXE header.

The RXE Convert programreduces the fix-up list by updating the nunber of
fix-up entries remaining in the fix-up list, but does not change the size
of .EXE header itself. 1In a large .RXE programthere may be severa

kil obytes of unused space remaining in the . RXE header that previously
contai ned fix-ups renoved during the conversion process.

To conplete the .EXE to . RXE conversion process, a nunber of fields in the
. EXE header of the .RXE file need to be updated. The primary fields of
the .EXE file header are shown bel ow

struct exehdr {
unsigned short sig; /* MS-LINK"s signature == 4D5A hex */
unsigned short imgmod; /* image length mod 512 (bytes) */
unsigned short imglen; /* image length in 512-byte pages (including hdr) */
unsigned short nreloc; /* Number of relocation table items */
unsigned short hdrlen; /* Size of header in paragraphs */
unsigned short minpar; /* Minimum paragraphs required above loaded program */
unsigned short maxpar; /* Maximum paragraphs required above loaded program */
unsigned short ssdsp; /* Displacement of SS within module (paragraphs) */
unsigned short spofs; /* Offset to be put in SP when executing */
unsigned short cksum; /* Neg. sum of all words in file, ignoring overflow */
unsigned short ipofs; /* Offset to be put in IP when executing */
unsigned short csdsp; /* Displacement of CS within module (paragraphs) */
unsigned short reldsp; /* Displacement of 1st reloc item in file (bytes) */
unsigned short ovlnum; /* Overlay no. (0 for resident part) */

}:

RXE Convert updates the following fields of the .RXE file's . EXE header

imgmod updated to reflect insertion of RXE_BASE segment

imglen updated to reflect insertion of RXE_BASE segment

nreloc updated to reflect remaining Data fix-ups in Data

hdrlen updated to include the Code segments that run in ROM

ssdsp updated to include the size of the RXE_BASE segment

ipofs updated to point to the RXE init code as described

above csdsp updated to point to the RXE init code as describe above
ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2

Filename: RXE Theory of Operation.doc Page: 11 of 17

RXE Header Description

RXE Convert also fills in a data structure known as the RXE_BASE structure
defi ned bel ow

struct rxe_base {

long rxe_sig; /* X - RXE Sig is "XIP" */ unsigned

rxe_ver; /* X - Version of RXE_BASE */ unsigned

cd_segq; /* X - Start of Code Block in RXE Memory */
unsigned Id_seg; /* R - Segment of start of RXE in memory */
unsigned iInt_no; /* R - Interrupt used for RXE support */
unsigned cd_cs; /* R - Segment of start code of RXE in memory */
unsigned cd_ip; /* R - Offset of start code of RXE in memory */
unsigned cd_len; /* R - Length in paragraphs of RXE code block */
unsigned cd_sum; /* R - Check sum of RXE code block */

unsigned rxe_base_len; /* R - The length in para®s of the RXE Block */
unsigned rxe_fixup_table[16]; /7* R - Fix-up table */
char code[2]; /* X - Code of the RXE_BASE */

}:

Each field description begins with either an 'X (meaning the data is
static) or an 'R which neans that RXE Convert fills in the field when the
.RXE file is created. The fields in the RXE BASE structure are filled in
as follows:

cd_seg start of program image in ROM (following .EXE header)

1d_seg user specified start of _EXE header in ROM

int_no the (user assigned) RXE base interrupt number

cd_cs application entry point segment in ROM

cd_ip application entry point offset in ROM

cd_len length of the Code block that executes in ROM

cd_sum checksum of the above block

rxe_base_ len length of the RXE_BASE segment

rxe_fixup_table paragraph address of Data segments

code start of the RXE init code, followed by the interrupt handlers
Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs

Page: 12 of 17 Filename: RXE Theory of Operation.doc

RXE Convert Operation

In summary, the RXE conversion program perforns a nunber of operations on
a standard DOS executable to allow it to remain partially in ROM and so
maxi m zi ng avail able nenory. The steps in this process include:

1) Go through the .EXE file and analyze all fix-ups that appear in
the .EXE file header. The action taken for each fix-up depends
on the location of the fix-up and the | ocation of the program
element it references. The three cases are:

A) For any Code reference, just use the ROM address specified
on the RXE conmmand |ine as the |oad address and fix-up
those segnent addresses with constant val ues. These fi x-ups
are renmoved fromthe . EXE header fix-up list.

B) For each Data reference in Data, adjust the value to
excl ude the program code and include the RXE initialization
code. DOsS will fix-up all data segnent references at | oad
tinme.

C) For any Data segnment reference appearing in a Code segnent,
replace the CPU instructions that reference the data with
speci al code that allows RXE to performthe fix-ups
dynami cally at run-time. These fix-ups are renoved from
the fix-up list in the . EXE header

2) Prepend a special section of Code and Data known as the RXE_BASE

segment to the Data. This special segnent will be copied to RAM
and initialized before the application to handle the dynamc fix-
ups.

3) Adjust the .EXE header of the RXE so that:

A) Only the RXE_BASE and the writable data segnents are copied
i nto RAM

B) Only fix-ups pertaining to Data in Data are perfornmed by
DCS.

C) The RXE initialization code is the first code to execute
and provides the handling of run-time fix-ups of Data
references in Code.

D) The changes are otherw se transparent to DOS and the
application.

ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 13 of 17

RXE Optimize Operation

Since . EXE header of the .RXE file nust reside in ROMwith the rest of the
program i mage, the previously full list of fix-ups still uses a

consi derabl e ambunt of space. The RXE Optim ze program can be used to
shrink the size of the .RXE header and reduce the ROM requirenments by
removi ng unused space fromthe . EXE header of the .RXE file. The steps in
the RXE optim zation process include the follow ng:

1) Conpare the nunber of fix-up entries in the .RXE and .EXE file
headers. The difference between these two values is the nunber
of words (neglecting paragraph alignnent) that can be renpved
fromthe . RXE header.

2) Adjust the differences in the fix-up counts for the required
par agraph alignnent of the start of the programimge. Call this
size, in bytes, the .RXE header delta.

3) Reduce the .RXE i mage size by copying the program i mge down over
the free space in the .EXE header in .RXE file. A tenporary file
is used to create the optim zed .RXE file.

4) Using the fix-up list in the .EXE header of the original .EXE
file, locate each Code relative fix-up in the .RXE program i nage
and subtract the .RXE header delta fromthe segnent value. Data
relative fix-ups are relocatable and not affected by this
optim zation, regardl ess of |ocation.

5) Reduce the following fields in the RXE BASE structure by the .RXE
header delta:
cd_seg
cd _cs
cd_ip

6) Adjust the following fields in the .RXE file's . EXE header by the
. RXE header delta:
hdrlen
imgmod
imglen

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 14 of 17 Filename: RXE Theory of Operation.doc

RXE Verify Operation

In order to nmake sure that the RXE Conversion process was successful, you
can run Datalight's RXE verification tool. RXEVERFY perforns a nunber of
checks on the operation of both the RXE Conversion and RXE optimn zation
progranms. The verification steps taken by RXE verify include:

1) Verification that all parts of the RXE file that should not have
been changed by RXE convert are, in fact, identical to the
original .EXE file.

2) Recal culation and validation of each fix-up for both Code and
Data to make sure the RXE file contains correct segnent address
dat a. Each Data relative fix-up in Code is exani ned to nake
sure that the RXE file contains reasonable instruction sequences.

3) Recalculation and validation of the nunber and type of entries in
the . EXE header fix-up list in the RXE file.

4) Recal cul ation and validation of entries in the .EXE file header

5) Recal cul ation and validation of entries in the RXE_BASE
structure.

6) Recal cul ation and validation of the RXE file checksum

ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2

Filename: RXE Theory of Operation.doc Page: 15 of 17

Errors and Warnings

When either the RXE conversion or verification program discovers a problem
in the converted XIP program a warning or error nessage is displayed
which identifies the content and | ocation of the problem

I n cases where ambi guous or unsupported instruction sequences are
identified by RXE Convert, the follow ng steps nust be taken to validate
t he RXE out put:

1) Make note of the location and type of problemnnoted in the RXE
program s warni ng or error nessage.

2) Refer to the programis .MAP file to determ ne the nodule and the
routine that contains the offending instruction sequence.

3) Reconpile the of fendi ng nodul e via assenbly.

4) Locate the offending instruction sequences and isolate themin a
test programthat can be easily inspected to determ ne the affect
of the RXE fix-up algorithns. The test program need not be
effectively executabl e but nust contain enough code before and
after the offending instructions to determne if RXE Convert can
make the correct decisions regarding those anbi guous instruction
sequences.

5) Convert the test programfroma .EXE to a . RXE and nmake sure that
sim lar warnings are generated to ensure that the offendi ng code
is actually present in the test program

6) Examine the RXE output in a debugger to determine if the proper
i nstruction sequence was sel ected and that subsequent instruction
al i gnnent was nmai nt ai ned.

7) Modify the original programas required to avoid the offending
i nstructi on sequence generation. This may be nost easily done by
working with an internediate assenbly file.

NOTE: If any other types of problens are encountered using the RXE tools,
contact Datalight for technical assistance.

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 16 of 17 Filename: RXE Theory of Operation.doc

RXE Verification

RXE verification consists of several hundred test cases that are designed
to ensure that supported features are corrected properly and unsupported
cases are correctly identified. Sonme test cases have been devel oped from

error conditions found during the life of the product.
the test organization foll ows:

A description of

1. Verify successful conditions with and without optim zed RXEs.

1.1. Verify each supported opcode (described in Handling Runtine

Fi xups) with the follow ng tests..

1.1.1. Verify menory bl ock before the target code fix-up

instruction is not disturbed.

1.1.2. Verify the proper start address of the instruction code

fix-up located within the code segnent. (CS)

1.1.3. Verify the proper start address of the follow ng

i nstruction or nenory bl ock.

1.1.4. Verify instruction fixup is correct in an anbi guous case.

1.1.5. Verify that fixups are conpleted in the data area

1.1.6. Verify correct data fixups in the data area

1.1.7. Verify each possible segnent override for

opcode.

each supported

1.2. Verify each unsupported instruction is found by RXE_CVT.

1.3. Verify each EXE header field is correctly nodified.

ROM-DOS, RXE Tools for XIP Programs Last edit; 01/09/01 12:45 PM, Revision: 2

Filename: RXE Theory of Operation.doc

Page: 17 of 17

