
ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 1 of 17

 RXE Theory of Operation
Copyright © 2000 by Datalight, Inc.

 Contents
Introduction.. 2
Fix-Up Descriptions.. 3
Removing Fix-Ups.. 4
Handling Runtime Fix-Ups.. 5
Handling Ambiguous Instructions ... 9
EXE Header Description.. 11
RXE Header Description.. 12
RXE Convert Operation ... 13
RXE Optimize Operation... 14
RXE Verify Operation.. 15
Errors and Warnings... 16
RXE Verification... 17

Document History

Revision Action Author Date

0.90 First draft. Dennis Edwards 10/24/2000

0.99 Final draft. Dennis Edwards 10/28/2000

1.00 Formatting changes and final review Brandon Thomas
Keith Garvin

10/28/2000

1.01 Added Verification section and completed content. Keith Garvin 12/01/2000

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 2 of 17 Filename: RXE Theory of Operation.doc

 Introduction
For a variety of reasons, including but not limited to the 64K maximum
segment size limit imposed by the Intel architecture, a DOS .EXE program
will typically contain multiple program segments. The address of any
program element (function entry point, variable, etc.) is determined by
combining the physical location of the start of a segment (a 16-bit value
expressed in units of 16 byte "paragraphs") with the 16-bit byte offset of
the data element within that containing segment. The maximum size of a
segment is limited by the 16 bits of the offset value and is 2^16 bytes or
64KB. The maximum real mode address space is also limited by the 16 bits
of the segment value which is (64K paragraphs*16 bytes/paragraph) = 1MB.

Because of the segmented addressing scheme, a program designer must employ
one of two strategies in order for a program to be relocatable at run-
time. The choice of these strategies by the program designer determines
whether the linker can generate a .COM file or if it must generate a .EXE
file.

In a .COM (.BIN, etc.) file, all program elements are contained within a
single segment. The value of this single segment can be determined at
run-time by inspecting the value of the CS register which is establish by
the DOS program loader when the program is passed control by the operating
system. The initial entry point for program execution is firmly
established as offset 100h within the single .COM file segment. This
address represents the first possible program element location following
the Program Segment Prefix (PSP). A DOS PSP is often generically referred
to as a process control block in discussions of operating system theory.

The DOS PSP is a 256-byte data structure created by DOS as part of the
load process. DOS updates the PSP during program execution. A DOS PSP
contains such information as the number and value of file handles opened
by the program, the program's command line arguments (if any), the segment
value of the program's environment strings and so on. Because the PSP is
located at offset 0 within the single .COM file segment the maximum
effective size of a .COM file image is 2^16-256=65280 bytes.

In order to overcome the size limit of .COM files or to otherwise take
advantage of the segmented Intel architecture (yes, there ARE advantages
to it) the program designer may chose to employ the alternate .EXE file
strategy. A DOS .EXE file may contain multiple code (executable) and/or
data segments and the program image may be as large as the real mode
environment and available memory allow. A .EXE file, like a .COM file, is
fully run-time relocatable by the DOS operating system.

When DOS runs a normal .EXE file from a disk file, the initial load image,
minus overlays, etc. but including both code and data is loaded into RAM
from disk. The location and length of the initial load image is stored in
the file's .EXE header that is prepended to the program load image by the
linker. The .EXE file header also contains a list of “fix-ups” (a.k.a.
program relocatable entries.)

ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 3 of 17

 Fix-Up Descriptions
A fix-up is a datum that identifies the location, relative to the start of
the load image, of a segment reference: The value in the .EXE load image
found at the fix-up location is the paragraph address relative to the
start of the load image where the referenced program segment begins.

In order for standard multi-segment .EXE files to be fully relocatable at
run-time, DOS must "fix up" the paragraph addresses in the .EXE image with
the actual segment addresses of the program when it loads the program
image from disk. The actual segment address of the start of a segment is
the paragraph address within the image plus the segment value at which the
program is loaded. Within a .EXE file, offsets are always taken relative
to the start of the element's containing segment rather than the program's
PSP segment. The segment-relative addressing scheme used by .EXE files is
convenient for building overlaid code modules as well as iterated control
constructs such as static object constructor and destructor tables.

In many embedded computer systems, mechanical disk drives are emulated by
a combination data structures and code that are contained in ROM. DOS ROM
disks exist within the executable first megabyte of address space of Intel
processors operating in Real Mode. Because programs routinely need to
update data as part of their normal execution, an ordinary .COM or .EXE
file must first be copied to RAM by DOS before the program can executed.
When execution space is at a premium, these duplicated ROM and RAM images
are wasteful of system resources. If a scheme could be developed to
execute at least part of the program directly from ROM, without copying
that portion of the program image to RAM, then embedded system
manufacturers could realize significant space savings. It is precisely
this problem of wasted system resources that the Datalight ROMable
EXecutable (RXE) conversion program solves.

In order to achieve the greatest user benefit, the RXE conversion program
relies on the segment ordering conventions of DOS programs that demand
that the .EXE image be divided into Code and Data segment classes with all
data segments grouped together at the end of the image file. Any Code
segment has executable and readable but not writable attributes and so may
contain both executable code and constant data. Any program element that
must be modified during program execution must be contained within the
collection of data segments located at the end of the .EXE image file. An
obvious assumption of the RXE conversion program is a complete absence of
self-modifying code. This ban on self-modifying code also disallows run-
time variables within the Code segment. These restrictions on Code
segment attributes are typical of modern operating system protection
schemes even though commercial DOS compiler start-up code and floating
point emulation software often violate such commonly accepted tenants.

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 4 of 17 Filename: RXE Theory of Operation.doc

 Removing Fix-Ups
Code that runs directly from ROM is sometimes referred to as "eXecute In
Place" (XIP) code. In order for the RXE conversion program to obtain XIP
capability it must consider three classes of fix-ups. The first class of
fix-ups are those which refer to Code segments. Since all Code segments
will remain in a fixed ROM location, any Code relative fix-up identified
in the .EXE header can be replaced with a constant segment address value
and then removed from the fix-up list in the .EXE file header of the
resultant .RXE program file. All Code segment references, whether
contained in a Code or a Data segment, are dealt with in this way. The
constant values that are used to replace the Code relative fix-ups are
based on information provided by the user when the RXE conversion program
is run. The user must specify both the segment address value where the
XIP image (including the RXE header) will reside in ROM as well as the
name (as specified in the program's .MAP file) of the first Data segment
in the .EXE image file that has a writable segment attribute.

The result of the RXE conversion process is a partially relocatable .RXE
image file. The program entry point of a .RXE file, specified in the .EXE
file header, will point to executable code in ROM. The .EXE file header
of the .RXE image file is also modified so that only the .RXE Data
segments (and the RXE_BASE segment which proceeds them) are loaded into
RAM and fixed up by DOS in the normal manner. The fix-ups that are
performed by DOS at load time are the second class of fix-ups that must be
considered by the RXE conversion program. Each of these fix-ups that
resides in a Data segment and refers to a data element contained within
the relocatable Data segments of the .RXE program. The length of the .EXE
header is adjusted to include the Code segments of the program so that
only the Data and RXE_BASE segments are loaded into RAM and fixed up by
DOS. The amount of RAM space saved by this XIP technique depends on the
amount of executable code and constant data that are stored in the Code
segments of the .EXE file since only those segments identified by the user
as having a writable attribute are copied to RAM by the DOS program
loader.

The third, final, and most troublesome class of fix-ups are those
contained within Code segments and that refer to program elements
contained within a Data segment. Since these Data segment references
reside in Code segments that are physically read-only, DOS cannot fix them
up at load time. Also, since various run-time factors (number of and
nature of DOS device drivers, internal DOS data structure allocations,
space reserved for user environment strings, etc.) each influence the
location at which the relocatable Data segments are loaded into memory by
DOS, these Data relative fix-ups cannot be resolved solely by the RXE
conversion program at the time it is run, run-time steps must also be
taken to adjust these addresses.

ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 5 of 17

 Handling Runtime Fix-Ups
The solution employed by the RXE conversion program for this third class
of fix-ups is to replace the machine code instructions that access the
data with a three-byte instruction sequence. The first two bytes of this
replacement instruction sequence generate a software interrupt, the base
number of which may be specified by the user at the time the RXE
conversion program is run. The final byte of the instruction sequence,
the Fix-up ID Byte (FUB), is decoded by the software interrupt handler in
the RXE_BASE segment that is prepended to the start of the Data segments
by the RXE conversion program. Depending on the length of the original
instruction sequence, one or more NOP instructions may also be emitted by
the RXE conversion program to maintain instruction alignment of the
replacement and subsequent machine code sequences. The definitions of the
fix-up ID bytes follow:

Fix-Up ID Bytes
Fix-up ID Description
B0-B4 This number is an index into a 16-element array of

Data segment values. An RXE interrupt handler uses
this index value to retrieve an actual segment value
from a table kept in the RXE_BASE segment.

B5-B7 For direct register accesses, this value specifies
the destination register into which the RXE
interrupt should load the specified segment value.
These register specifications are decoded as follows

0 AX register
1 BX register
2 CX register
3 DX register
4 SI register
5 DI register
6 BP register
7 Indicates that the register (or

constant) indirection is to be
employed and that the destination of
the segment value is a memory
location rather than a CPU register.
The RXE interrupt handler decodes
the actual form of the memory
reference by inspecting the modr/m
byte which (after processing by RXE
Convert) follows any imm8 or imm16
terms in the register indirect
addressing expression.

The RXE software interrupt handlers are initialized at program run-time.
The values stored in the RXE_BASE table are fixed up after the Data
segments have been loaded into memory by DOS (which performs normal Data
relative fix-ups). Once the interrupt handlers have been initialized and
the RXE_BASE table has been fixed up, control is passed on to the actual
entry point of the XIP application.

When an RXE software interrupt is generated by the XIP program during its
normal course of operation, the RXE interrupt handler gains control and

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 6 of 17 Filename: RXE Theory of Operation.doc

decodes the FUB (and possibly modr/m and displacement bytes) at the
interrupt's return CS:IP location to determine the operation that needs to
be performed to satisfy the Data relative fix-up. Once the appropriate
action has been performed by the RXE interrupt handler it adjusts the
return CS:IP and returns control to the application program with the Data
relative fix-up effectively performed. The RXE base interrupt handler
decodes the movement of immediate segment data into registers and memory.
A second interrupt handler (for interrupt number RXE base+1) is used
solely to push immediate segment values onto the stack.

The RXE conversion program only supports 80186 or earlier CPUs.

Within those instruction sets there are three classes of instructions that
RXE Convert supports. The supported instructions are:

Supported Instruction Fix-Ups...
Mnemonic Op-code
mov r16, imm16 {B8..BF} FIXUP
mov r/m16, imm16 C7 modr/m [disp] FIXUP
push imm16 68 FIXUP

where:
imm16 is an immediate (constant) segment

value in Code
r16 is a destination register
r/m16 is either a destination register or an

address expression
modr/m is the CPU modr/m byte which defines

the current r/m16 address expression
disp is an optional 8-bit or 16-bit term in

the address expression as specified by
modr/m

FIXUP is the segment's paragraph address
injected into the Code segment by the
linker

The Intel CPU manuals are the standard reference for how to decode the
machine code emitted by compilers. Please refer to those manuals for more
information on these instruction sequences.

Each of the above instructions is similar in one regard they all take a
16-bit immediate value as the source operand. This is the only operation
that may be meaningfully associated with a fix-up. There are several other
instructions that also act on imm16 data and which could be found in the
instruction stream, which is terminated at a fix-up location. The imm16
instructions that are NOT supported by RXE follow:

UnSupported Instruction Fix-Ups...
Mnemonic Op-code
mov sp, imm16 BC imm16
mov sp, imm16 C7 C4 imm16
CS: 2E
SS: 36
DS: 3E
ES: 26

ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 7 of 17

imul r/m16, imm16 69 modr/m [disp] FIXUP
test r/m16, imm16 F7 modr/m [disp] FIXUP
add r/m16, imm16 81 modr/m [disp] FIXUP
or r/m16, imm16 81 modr/m [disp] FIXUP
adc r/m16, imm16 81 modr/m [disp] FIXUP
sbb r/m16, imm16 81 modr/m [disp] FIXUP
and r/m16, imm16 81 modr/m [disp] FIXUP
sub r/m16, imm16 81 modr/m [disp] FIXUP
xor r/m16, imm16 81 modr/m [disp] FIXUP
cmp r/m16, imm16 81 modr/m [disp] FIXUP
add ax, imm16 05 FIXUP
or ax, imm16 0D FIXUP
adc ax, imm16 15 FIXUP
sbb ax, imm16 1D FIXUP
and ax, imm16 25 FIXUP
sub ax, imm16 2D FIXUP
xor ax, imm16 35 FIXUP
cmp ax, imm16 3D FIXUP
test ax, imm16 A9 FIXUP
retn imm16 C2 FIXUP
retf imm16 CA FIXUP
enter imm16, imm8 C8 FIXUP
dw @Data @Data

where:
Imm16 is an immediate (constant) segment

value in Code
r16 is a destination register
r/m16 is either a destination register or an

address expression
Modr/m is the CPU modr/m byte which defines

the current r/m16 address expression
Disp is an optional 8-bit or 16-bit term in

the address expression as specified by
modr/m

FIXUP is the segment's paragraph address
injected into the Code segment by the
linker

NOTES:
1) The "mov sp, imm16" sequence is specifically unsupported.
2) Segment overrides are not detectable and thus not

supported by RXE. Any possible occurrence of a segment
override will cause RXE Convert to generate an unsupported
segment override warning describing the op-code’s location

3) The reg field of the modr/m byte is used to extend the
meaning of all opcodes of value 81 and so differentiate
one instruction from another. All other symbols are as
above.

4) The declaration of data that will cause a fix-up in a code
segment is specifically unsupported.

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 8 of 17 Filename: RXE Theory of Operation.doc

Should the RXE Convert program discover any of the unsupported opcodes
above (except segment overrides) it will, if it cannot reasonably
interpret them as part of a supported instruction sequence, display a
message describing the nature and location of the instruction and abort.
In fact, any sequence of bytes (such as is often encountered when data
declarations appear in a Code segment) that cannot be reasonably decoded
as a supported instruction sequence will cause the RXE Convert program to
display a message and abort.

While the relative number of unsupported instructions seems large, years
of practical experience indicate that the instructions that compilers emit
to deal with fix-up values are almost exclusively direct register moves.
Support for other cases have been added as required.

ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 9 of 17

 Handling Ambiguous Instructions
A more likely problem than that of an unsupported instruction sequence is
that of an ambiguous instruction sequence. The reason ambiguous cases
exist is that the RXE conversion program can only know the location of the
fix-up value, not the beginning of the instruction sequence. The .EXE
file header contains absolutely no information regarding instruction
alignment as no such information is needed then the program is fully
relocatable. To understand the significance of ambiguous instruction
sequences let us consider the following assembly language examples:

 mov al, C7H
mov [si], SEG Data

If we assume the paragraph address of the Data segment is 0B7A0 then these
assembly language instructions would cause the assembler/linker to emit
the following sequence of bytes:

 Address -4 -3 -2 -1 0
 Data B0 C7 C7 04 A0 B7

The address values shown in the table above are relative to the start of
the fix-up in the opcode sequence. As described before, the C7 opcode is
generated by the supported assembly language instruction "mov r/m16,
imm16". Note that there are two occurrences of the C7 opcode present in
the byte sequence above and that both of those values appear within the
maximum four-byte instruction length of that instruction. RXE Convert is
faced with the dilemma of resolving the two choices. The possible
interpretations of the above byte sequence are:

mov di, A004
-or-

mov [si], B7A0

The key to the resolution of this problem is to note that only the latter
interpretation will align the start of the required immediate data with
the actual location of the fix-up in the Code segment and so the first
case is clearly wrong. RXE Convert will correctly choose the latter case
in this example because it has enough data to make a correct
determination. Now consider this alternate example:

mov [bx+si+68], SEG Data

The output from the assembler/linker in this case would be the following
byte sequence:

 Address -3 -2 -1 0
Data C7 40 68 A0 B7

In this case RXE Convert is faced with choosing between the following two
supported opcode sequences.

mov [bx+si+68], SEG Data

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 10 of 17 Filename: RXE Theory of Operation.doc

- or -
push SEG Data

Both of these instructions align the fix-up properly and both decode as
supported instruction sequences by RXE. There is no way for RXE Convert
to tell which is the correct choice. It so happens that because RXE
Convert processes single byte opcodes first, it will wrongly choose the
latter choice in this case.

Because RXE Convert cannot guarantee it will always choose the right
instruction sequence in ambiguous cases, warnings, describing the location
of the code sequence in the .EXE file, will be generated whenever an
ambiguous instruction sequence is detected. The following classes of
ambiguous instructions produce warnings in RXE Convert:

A) unsupported instructions within a longer supported instruction
sequence

B) supported instructions within a longer supported instruction
sequence

C) supported instructions within a longer unsupported instruction
sequence

D) possible segment overrides

NOTES:

1) Any purely unsupported instruction sequence, nested or not, will
cause RXE Convert to display an error message and abort.

2) Any unclassifiable instruction sequence (one that can not be
classified as supported or unsupported) will cause RXE Convert to
display an error message and abort.

3) The declaration of a variable in a Code segment which causes a
Data relative fix-up may or may not be detectable by RXE Convert
and/or RXE Verify.

As illustrated, RXE Convert's warnings regarding ambiguous instruction
sequences may or may not be benign. It is the users responsibility to
investigate and validate such instruction sequences and determine the
validity or the invalidity of the RXE Convert output.

ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 11 of 17

 EXE Header Description
When the .EXE to .RXE conversion process has been completed, all entries
in the fix-up list, except for those that point to Data fix-ups within the
Data segments, will have been removed from the .EXE header.

The RXE Convert program reduces the fix-up list by updating the number of
fix-up entries remaining in the fix-up list, but does not change the size
of .EXE header itself. In a large .RXE program there may be several
kilobytes of unused space remaining in the .RXE header that previously
contained fix-ups removed during the conversion process.

To complete the .EXE to .RXE conversion process, a number of fields in the
.EXE header of the .RXE file need to be updated. The primary fields of
the .EXE file header are shown below.

struct exehdr {
 unsigned short sig; /* MS-LINK's signature == 4D5A hex */
 unsigned short imgmod; /* image length mod 512 (bytes) */
 unsigned short imglen; /* image length in 512-byte pages (including hdr) */
 unsigned short nreloc; /* Number of relocation table items */
 unsigned short hdrlen; /* Size of header in paragraphs */
 unsigned short minpar; /* Minimum paragraphs required above loaded program */
 unsigned short maxpar; /* Maximum paragraphs required above loaded program */
 unsigned short ssdsp; /* Displacement of SS within module (paragraphs) */
 unsigned short spofs; /* Offset to be put in SP when executing */
 unsigned short cksum; /* Neg. sum of all words in file, ignoring overflow */
 unsigned short ipofs; /* Offset to be put in IP when executing */
 unsigned short csdsp; /* Displacement of CS within module (paragraphs) */
 unsigned short reldsp; /* Displacement of 1st reloc item in file (bytes) */
 unsigned short ovlnum; /* Overlay no. (0 for resident part) */
};

RXE Convert updates the following fields of the .RXE file's .EXE header:

imgmod updated to reflect insertion of RXE_BASE segment
imglen updated to reflect insertion of RXE_BASE segment
nreloc updated to reflect remaining Data fix-ups in Data
hdrlen updated to include the Code segments that run in ROM
ssdsp updated to include the size of the RXE_BASE segment

 ipofs updated to point to the RXE init code as described
above csdsp updated to point to the RXE init code as describe above

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 12 of 17 Filename: RXE Theory of Operation.doc

 RXE Header Description
RXE Convert also fills in a data structure known as the RXE_BASE structure
defined below.

struct rxe_base {
 long rxe_sig; /* X - RXE Sig is "XIP" */ unsigned
 rxe_ver; /* X - Version of RXE_BASE */ unsigned
 cd_seg; /* X - Start of Code Block in RXE Memory */
 unsigned ld_seg; /* R - Segment of start of RXE in memory */
 unsigned int_no; /* R - Interrupt used for RXE support */
 unsigned cd_cs; /* R - Segment of start code of RXE in memory */
 unsigned cd_ip; /* R - Offset of start code of RXE in memory */
 unsigned cd_len; /* R - Length in paragraphs of RXE code block */
 unsigned cd_sum; /* R - Check sum of RXE code block */
 unsigned rxe_base_len; /* R - The length in para's of the RXE Block */
 unsigned rxe_fixup_table[16]; /* R - Fix-up table */
 char code[2]; /* X - Code of the RXE_BASE */
};

Each field description begins with either an 'X' (meaning the data is
static) or an 'R' which means that RXE Convert fills in the field when the
.RXE file is created. The fields in the RXE_BASE structure are filled in
as follows:

cd_seg start of program image in ROM (following .EXE header)
ld_seg user specified start of .EXE header in ROM
int_no the (user assigned) RXE base interrupt number
cd_cs application entry point segment in ROM
cd_ip application entry point offset in ROM
cd_len length of the Code block that executes in ROM
cd_sum checksum of the above block
rxe_base_len length of the RXE_BASE segment
rxe_fixup_table paragraph address of Data segments
code start of the RXE init code, followed by the interrupt handlers

ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 13 of 17

 RXE Convert Operation
In summary, the RXE conversion program performs a number of operations on
a standard DOS executable to allow it to remain partially in ROM and so
maximizing available memory. The steps in this process include:

1) Go through the .EXE file and analyze all fix-ups that appear in
the .EXE file header. The action taken for each fix-up depends
on the location of the fix-up and the location of the program
element it references. The three cases are:

A) For any Code reference, just use the ROM address specified
on the RXE command line as the load address and fix-up
those segment addresses with constant values. These fix-ups
are removed from the .EXE header fix-up list.

B) For each Data reference in Data, adjust the value to
exclude the program code and include the RXE initialization
code. DOS will fix-up all data segment references at load
time.

C) For any Data segment reference appearing in a Code segment,
replace the CPU instructions that reference the data with
special code that allows RXE to perform the fix-ups
dynamically at run-time. These fix-ups are removed from
the fix-up list in the .EXE header.

2) Prepend a special section of Code and Data known as the RXE_BASE
segment to the Data. This special segment will be copied to RAM
and initialized before the application to handle the dynamic fix-
ups.

3) Adjust the .EXE header of the RXE so that:

A) Only the RXE_BASE and the writable data segments are copied
into RAM.

B) Only fix-ups pertaining to Data in Data are performed by
DOS.

C) The RXE initialization code is the first code to execute
and provides the handling of run-time fix-ups of Data
references in Code.

D) The changes are otherwise transparent to DOS and the
application.

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 14 of 17 Filename: RXE Theory of Operation.doc

 RXE Optimize Operation
Since .EXE header of the .RXE file must reside in ROM with the rest of the
program image, the previously full list of fix-ups still uses a
considerable amount of space. The RXE Optimize program can be used to
shrink the size of the .RXE header and reduce the ROM requirements by
removing unused space from the .EXE header of the .RXE file. The steps in
the RXE optimization process include the following:

1) Compare the number of fix-up entries in the .RXE and .EXE file
headers. The difference between these two values is the number
of words (neglecting paragraph alignment) that can be removed
from the .RXE header.

2) Adjust the differences in the fix-up counts for the required
paragraph alignment of the start of the program image. Call this
size, in bytes, the .RXE header delta.

3) Reduce the .RXE image size by copying the program image down over
the free space in the .EXE header in .RXE file. A temporary file
is used to create the optimized .RXE file.

4) Using the fix-up list in the .EXE header of the original .EXE
file, locate each Code relative fix-up in the .RXE program image
and subtract the .RXE header delta from the segment value. Data
relative fix-ups are relocatable and not affected by this
optimization, regardless of location.

5) Reduce the following fields in the RXE_BASE structure by the .RXE
header delta:

cd_seg
cd_cs
cd_ip

6) Adjust the following fields in the .RXE file's .EXE header by the
.RXE header delta:

hdrlen
imgmod
imglen

ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 15 of 17

 RXE Verify Operation
In order to make sure that the RXE Conversion process was successful, you
can run Datalight's RXE verification tool. RXEVERFY performs a number of
checks on the operation of both the RXE Conversion and RXE optimization
programs. The verification steps taken by RXE verify include:

1) Verification that all parts of the RXE file that should not have
been changed by RXE convert are, in fact, identical to the
original .EXE file.

2) Recalculation and validation of each fix-up for both Code and
Data to make sure the RXE file contains correct segment address
data. Each Data relative fix-up in Code is examined to make
sure that the RXE file contains reasonable instruction sequences.

3) Recalculation and validation of the number and type of entries in
the .EXE header fix-up list in the RXE file.

4) Recalculation and validation of entries in the .EXE file header.

5) Recalculation and validation of entries in the RXE_BASE
structure.

6) Recalculation and validation of the RXE file checksum.

Last edit: 01/09/01 12:45 PM, Revision: 2 ROM-DOS, RXE Tools for XIP Programs
Page: 16 of 17 Filename: RXE Theory of Operation.doc

 Errors and Warnings
When either the RXE conversion or verification program discovers a problem
in the converted XIP program, a warning or error message is displayed
which identifies the content and location of the problem.

In cases where ambiguous or unsupported instruction sequences are
identified by RXE Convert, the following steps must be taken to validate
the RXE output:

1) Make note of the location and type of problem noted in the RXE
program's warning or error message.

2) Refer to the program's .MAP file to determine the module and the
routine that contains the offending instruction sequence.

3) Recompile the offending module via assembly.

4) Locate the offending instruction sequences and isolate them in a
test program that can be easily inspected to determine the affect
of the RXE fix-up algorithms. The test program need not be
effectively executable but must contain enough code before and
after the offending instructions to determine if RXE Convert can
make the correct decisions regarding those ambiguous instruction
sequences.

5) Convert the test program from a .EXE to a .RXE and make sure that
similar warnings are generated to ensure that the offending code
is actually present in the test program.

6) Examine the RXE output in a debugger to determine if the proper
instruction sequence was selected and that subsequent instruction
alignment was maintained.

7) Modify the original program as required to avoid the offending
instruction sequence generation. This may be most easily done by
working with an intermediate assembly file.

NOTE: If any other types of problems are encountered using the RXE tools,
contact Datalight for technical assistance.

ROM-DOS, RXE Tools for XIP Programs Last edit: 01/09/01 12:45 PM, Revision: 2
Filename: RXE Theory of Operation.doc Page: 17 of 17

 RXE Verification

RXE verification consists of several hundred test cases that are designed
to ensure that supported features are corrected properly and unsupported
cases are correctly identified. Some test cases have been developed from
error conditions found during the life of the product. A description of
the test organization follows:

1. Verify successful conditions with and without optimized RXEs.

1.1. Verify each supported opcode (described in Handling Runtime
Fixups) with the following tests...

1.1.1. Verify memory block before the target code fix-up
instruction is not disturbed.

1.1.2. Verify the proper start address of the instruction code
fix-up located within the code segment. (CS)

1.1.3. Verify the proper start address of the following
instruction or memory block.

1.1.4. Verify instruction fixup is correct in an ambiguous case.

1.1.5. Verify that fixups are completed in the data area.

1.1.6. Verify correct data fixups in the data area.

1.1.7. Verify each possible segment override for each supported
opcode.

1.2. Verify each unsupported instruction is found by RXE_CVT.

1.3. Verify each EXE header field is correctly modified.

